
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Ruby: Multiple Inheritance, Interfaces, Mixins

1

Overview

•  Essence of object-oriented programming: inheritance,
overriding, dynamic-dispatch

•  Classic inheritance includes specification (types) and
implementation (code)

•  What about multiple inheritance
(>1 superclass)?
–  When does it make sense?
–  What are the issues?

Inheritance Models

•  Single Inheritance: at most 1 superclass
–  Subclass inherits methods and state from

superclass; can override methods, add more
methods and instance variables

•  Multiple Inheritance: >1 superclass
–  Useful – factor different traits/behavior to small

classes, then extend several of them
–  But hard to use well (e.g., C++)

•  Typical problem: big, brittle inheritance graph,
methods migrate to bloated superclasses over
time; becomes (very) hard to make changes

Inheritance Models

•  Java-style interfaces: >1 type
–  Doesn’t apply to dynamically-typed languages
–  Class “inherits” (has) multiple types, but
–  Only inherits code from one parent class
–  Fewer problems than multiple inheritance

•  Mixins: >1 “source of methods”
–  Similarities to multiple inheritance – many of the

goodies with fewer(?) problems

Multiple Inheritance

•  If single inheritance is so useful, why not allow
multiple superclasses?
–  Semantic and implementation complexities
–  Typing issues w/static typing

•  Is it useful? Sure:
–  Color3DPoint extends 3DPoint, ColorPoint

•  Naïve view: subclass has all fields and methods of all
superclasses

Trees, DAGs, and Diamonds

•  Class hierarchy forms a graph
–  Edges from subclasses to superclasses
–  Single inheritance: a tree
–  Multiple inheritance: a DAG

•  Diamonds
–  With multiple inheritance, may be multiple ways to

show that A is a (transitive) subclass of B
–  If all classes are transitive subclasses of e.g.

Object, multiple inheritance always leads to
diamonds

Multiple Inheritance: Semantic Issues

•  What if multiple superclasses define the same
message m or field f ?
–  Classic example: Artists, Cowboys, ArtistCowboys

•  Options for method m:
–  Reject subclass as ambiguous – but this is too

restrictive (esp. w/diamonds)
–  “Left-most superclass wins” – too restrictive (want

per-method flexibility) + silent weirdness
–  Require subclass to override m (can use explicitly

qualified calls to inherited methods)

Multiple Inheritance: Semantic Issues

•  Options for field f : One copy of f or multiple copies?
–  Multiple copies: what you want if Artist::draw and

Cowboy::draw use inherited fields differently
–  Single copy: what you want for Color3dPoint

x and y coordinates
•  C++ provides both kinds of inheritance

–  Either two copies always, or one copy if field
declared in same (parent) class

Java-Style Interfaces

•  In Java we can define interfaces and classes can
implement them
–  Interface describes methods and types
–  Interface is a type – can have variables,

parameters, etc. with that type
–  If class C implements interface I, then instances of

C have type I but must define everything in I
(directly or via inheritance)

Interfaces are all about Types

•  In Java, we can have 1 immediate superclass and
implement any number of interfaces

•  Interfaces provide no methods or fields – no
duplication problems
–  If I1 and I2 both include some method m,

implementing class must provide it somehow
•  But this doesn’t allow what we want for

Color3DPoints or ArtistCowboys
–  No code inheritance/reuse possible

Java Interfaces and Ruby

•  Concept is totally irrelevant for Ruby
–  We can already send any message to any object

(dynamic typing)
–  We need to get it right (can always ask an object

what messages it responds to)

Interfaces vs Abstract Classes

•  Interfaces are not needed in C++. Why?
•  C++ allows methods and classes to be abstract

–  Specified in class declaration but not provided in
implementation (same as Java)

–  Called pure virtual methods in C++
•  So a class can extend multiple abstract classes

–  Same as implementing interfaces
•  But if that’s all you need, you don’t need multiple

inheritance
–  Multiple inheritance is not just typing

Mixins

•  A mixin is a collection of methods
–  No fields, constructors, instances, etc.

•  Typically a language with mixins allows 1 superclass
and any number of mixins
–  We’ve seen this in Ruby

•  Bad news: less powerful than multiple inheritance
(what is in a class, what is in a mixin?)

•  Good news: Clear semantics, great for certain idioms
(Enumerate, Comparable using each, <=>)

